The Clean Energy-Ecology Interrelatedness: Evidence from the S&P Dow Jones Indices
Main Article Content
Abstract
In the context where “sustainable energy” promotes “environmental sustainability,” and as private investment in clean energy gains traction as a vital measure for climate change mitigation, evaluating its impact on ecology-focused firms is essential. This study examines the “clean energy-ecology nexus,” investigating whether the rapid growth of clean energy technologies driving sustainable energy transitions positively influences ecology through effective water and waste management practices and optimized industrial systems. Understanding this interrelationship within the frequency domain allows for informed conclusions. We apply a recently developed frequency-domain Granger-causality inferential framework to analyze the clean energy-ecology nexus in both unconditional and conditional contexts. The results suggest that clean energy technologies benefit ecology, reinforcing the connection between clean energy and ecological health.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Berzuini, C., P. Dawid, and L. Bernardinelli. Causality: Statistical Perspectives and Applications. John Wiley & Sons, Ltd., 2012. DOI:10.1002/9781119945710. DOI: https://doi.org/10.1002/9781119945710
Breitung, J., and B. Candelon. “Testing for Short- and Long-Run Causality: A Frequency-Domain Approach.” Journal of Econometrics, vol. 132, no. 2, 2006, pp. 363–378. DOI: 10.1016/j.jeconom.2005.02.004. DOI: https://doi.org/10.1016/j.jeconom.2005.02.004
Breitung, J., and S. Schreiber. “Assessing Causality and Delay Within a Frequency Band.” Econometrics and Statistics, vol. 6, 2018, pp. 57–73. DOI: 10.1016/j.ecosta.2017.04.005. DOI: https://doi.org/10.1016/j.ecosta.2017.04.005
Ding, M., Y. Chen, and S. L. Bressler. “Granger Causality: Basic Theory and Application to Neuroscience.” Handbook of Time Series Analysis: Recent Theoretical Developments and Applications, edited by B. Schelter, M. Winterhalder, and J. Timmer, Wiley-VCH Verlag GmbH & Co. KGaA, 2006, pp. 437–460. DOI:10.48550/arXiv.q-bio/0608035. DOI: https://doi.org/10.1002/9783527609970.ch17
Farne, Matteo, and Angela Montanari. “A Bootstrap Test to Detect Prominent Granger-Causalities Across Frequencies.” arXiv:1803.00374v2 [q-fin.ST], 2018. DOI: 10.48550/arXiv.1803.00374.
Ferrer, Roman, Syed-Jawad-Hussain Shahzad, Raquel Lopez, and Francisco Jarerio. “Time and Frequency Dynamics of Connectedness Between Renewable Energy Stocks and Crude Oil Prices.” Energy Economics, vol. 76, no. 1, 2018, pp. 1–20. DOI: 10.1016/j.eneco.2018.09.022. DOI: https://doi.org/10.1016/j.eneco.2018.09.022
Geweke, J. “Measurement of Linear Dependence and Feedback Between Multiple Time Series.” Journal of the American Statistical Association, vol. 77, no. 378, 1982, pp. 304–324. DOI: 10.1080/01621459.1982.10477803. DOI: https://doi.org/10.2307/2287238
Granger, C. “Investigating Causal Relations by Econometric Models and Cross-Spectral Methods.” Econometrica, vol. 37, no. 3, 1969, pp. 424–438. DOI: 10.1017/CBO9780511753978.002. DOI: https://doi.org/10.2307/1912791
Hastik, Richard, Stefano Basso, Clemens Geitner, Christin Haida, Ales Poljanec, Alessia Portaccio, Borut Vrscaaj, and Chris Walzer. “Renewable Energies and Ecosystem Service Impacts.” Renewable and Sustainable Energy Reviews, vol. 48, no. 1, 2015, pp. 608–623. DOI: 10.1016/j.rser.2015.04.004. DOI: https://doi.org/10.1016/j.rser.2015.04.004
Nasreen, Samia, Aviral Kumar Tiwari, Juncal Cunado Eizaguirre, and Mark E. Wohar. “Dynamic Connectedness Between Oil Prices and Stock Returns of Clean Energy and Technology Companies.” Journal of Cleaner Production, vol. 260, 2020, 121015. DOI: 10.1016/j.jclepro.2020.121015. DOI: https://doi.org/10.1016/j.jclepro.2020.121015
Nishiyama. “Exports’ Contribution to Economic Growth: Empirical Evidence for California, Massachusetts, and Texas, Using Employment Data.” Journal of Regional Science, vol. 37, 1997, pp. 99–125. DOI: 10.1111/0022-4146.00045. DOI: https://doi.org/10.1111/0022-4146.00045
Pierce, David A. “R² Measures for Time Series.” Journal of the American Statistical Association, vol. 74, no. 1, 1979, pp. 901–910. DOI: https://doi.org/10.1080/01621459.1979.10481052
Politis, D. N., and J. P. Romano. “The Stationary Bootstrap.” Journal of the American Statistical Association, vol. 89, no. 1, 1994, pp. 1303–1313. DOI: 10.1080/01621459.1994.10476870. DOI: https://doi.org/10.1080/01621459.1994.10476870
Symitsi, Efthymia, and Konstantinos J. Chalvatzis. “Return, Volatility, and Shock Spillovers of Bitcoin with Energy and Technology Companies.” Economics Letters, vol. 170, no. 1, 2018, pp. 127–130. DOI: 10.1016/j.econlet.2018.06.012. DOI: https://doi.org/10.1016/j.econlet.2018.06.012
Tiwari, Aviral Kumar. “The Frequency-Domain Causality Analysis Between Energy Consumption and Income in the United States.” Economia Aplicada, vol. 18, no. 1, 2014, pp. 51–67. DOI: https://doi.org/10.1590/1413-8050/ea307
Tiwari, Aviral Kumar, Richard O. Olayeni, Sodik Adejonwo Olofin, and Tsangyao Chang. “The Indian Inflation–Growth Relationship Revisited: Robust Evidence from Time-Frequency Analysis.” Applied Economics, 2019. DOI: 10.1080/00036846.2019.1616065. DOI: https://doi.org/10.1080/00036846.2019.1616065
Zivot, E., and D. Andrews. “Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis.” Journal of Business and Economic Statistics, vol. 10, no. 1, 1992, pp. 251–270. DOI: 10.1080/07350015.1992.10509904. DOI: https://doi.org/10.1080/07350015.1992.10509904